JXU

LINZ INSTITUTE
OF TECHNOLOGY

Modellgetriebenes
Softwareengineering in der

Industrieautomatisierung
mit der IEC 61499

Univ.-Prof. Dr. Alois Zoitl
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

N

Source: Last Action Hero, Columbia Pictures

m NEws The lights have been on at a Massachusetts school for over a year because no one can turn them off SHARE & SAVE — f ¥ = I E

EXCLUSIVE

U.S. MEWS

The lights have been on at a Massachusetts school for
over a year because no one can turn them off

Blame it on the pandemic and "supply chain problems,” says the school district’s assistant superintendent of finance.

it

The lighting system was installed at Minnechaug Regional High

money and energy. But|ever since the software that runs it failed

on continuously, costing taxpayers a small fortune.

School when it was built over a decade ago and was intended to save

on

Aug. 24, 2021, the lights in the Springfield suburbs school have been

—— All the lights at Minnechaug Regional High School in Wilbraham, Mass., have been on since Aug. 24, 2021. Matt Nighswander / NBC News

>
Corporate needs you to find the differences
etween this picture and this picture.

Still the same programming model!

ﬁ Industry 3.0 control software!

Problem: Software Development Effort

... iIncreases the software-engineering portion of the overall Manufacturing
costs of a machine: Starting from currently 50% share for electronics and
software the share will rise in 2020 up to 80%."

translated from IEE 01-2006

,We have so far mastered most topics and could save up to 70% of the
engineering effort. What makes us still problems is the software effort.”
translated from SPS Magazin 08-2012

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl

IEC 61499

Domain-specific Modeling Language for Distributed
Industrial Process Measurement and Control Systems

L

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl

How the UML diagram How the code is
describes the software actually written

Source: 9Gag

Comparing IEC 61131-3 and IEC 61499 with Code Metrics

Sequential process Continuous process

IEC 61131-3 IEC 61499 IEC 61131-3 IEC 61499
Program vocabulary 587 217 __ = : Program vocabulary 68 82
Program length 581 439 ‘. = ; Program length 61 117
Estimated length 4839.35 1503.98 ‘ ! Estimated length 346.63 455.60
Purity ratio 8.33 3.43 s = ! Purity ratio 5.68 3.89
Program volume 5343.58 3407.32 £ i Program volume 371.34 743.83
Program difficulty 109.50 46.49 EELE il i Program difficulty 15 11.77
Program effort 5856122.33 158408.48 e y g Program effort 5570.03 8758.04
Cyclomatic Complexity 33 45 (33) o = Cyclomatic Complexity 3 6 (3)

P. Gsellmann, M. Melik-Merkumians and G. Schitter, "Comparison of Code Measures of IEC 61131-3 and 61499 Standards for Typical Automation
Applications," 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, 2018, pp. 1047-1050.

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 8

Stronger Encapsulation!
Events!

Source: The Big Bang Theory, CBS

Events in PLC Programs’?
' | ’i -

7/ R 7 e don’t do that here!
"A* l™>
"‘ ;, i ;‘. -. l (KINOCHEC

Source: Avengers: Infinity War, Walt Disney Studios Motion Pictures

’

.

\¥,
vl v ER .
Tolp® SR e
ourc

s

Oh Really?

'%1 olate Factory, Paramount Pictures

What if | told you ...

... PLC programs are full of events?

Source: The Matrix, Warner Bros.

Events in PLC Programming

Variables:

= Init 1
Start
Stop
Done 01 —»> BOOL —= BOOL
E BOOL INT

Fror 1 INT
Send
0] . -
BOOL
LINZ INSTITUTE CYBER-PHYSICAL
J ¥ U OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 13

o .,
. L el W
e Fod
s - &
-
Kl . -
t;_ i
Tn
.\r.
i
',_ \-
L]
-

.........

+

Source: NASA/ESA . °

What i__s the Origin of Events in IEC 61499? x

,‘ .

IEC 61499 Event Origin:
Synchronize Distributed SFCs

Control Eng. Practice, Vol. 4, No. 6, pp. 855-861, 1996 —h -‘-—-——-——-—- C
Pergamon Copyright ® 1996 Elsevier Science Ltd C2 T2 T4 4
g Printed in Great Britain. All rights reserved

0967-0661/96 $15.00 + 0.00

PI1:850967-0661(96)00078-0

Step marking

ASYNCHRONOUS AND SYNCHRONOUS APPROACHES FOR 0
PROGRAMMING DISTRIBUTED CONTROL SYSTEMS BASED ON S2 S3 S4 S5 E
STANDARDS

R. Schoop* and A, Strelzoff**

*AEG Schneider Automation, Steinheimer Strasse 117, 63500 Seligenstadt, Germany (schoop@modicon.de)
¥*AEG Schneider Automation, One High Stree1, North Andover, MA 08145-2699, USA

Sync &
A3 A4 Action Execution AS A6

(Received October 1995; in final form March 1996)

Abstract: Based on a general design model for distributed control systems, and using standardised Ci Sync & Cj
languages of IEC 1131-3 for control, three approaches to programming are investigated. The first is In put fre eze

based on IEC programs with extensions, the second is a decomposition of programs with SFC
notations and the third approach uses function blocks corresponding to the IEC TC63 Function Block
Standard. The approaches are specified and compared, and conclusions for their use and tor further

work are drawn, The intention of the contribution is to discuss possibilities for open programming Fig. 8. MeSsageS between distributed atoms

models, rather than to present final results.

R. Schoop, A. Strelzoff Asynchronous and synchronous approaches for programming distributed control systems based on standards, Control Engineering Practice, Vol. 4, . 6, 1996.

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 15

Core Element: Event-driven Function Block

. _ _ Event-Interface
B Function Blocks extended with event interface

B Pure event-driven execution model

B Data types based on
IEC 61131-3

B Focus on encapsulation and reuse
B No global or directly addressed variables

B Hardware access with special function block type:

Service Interface Function Block Encapsulated
Functionality

FB Type Name

Data-Interface

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 16

General Function Block Execution Behavior

1. Input event gets delivered

2. Associated input data is sampled 7]
. . - —> E

3. Event execution control is notified = Event Execution

4. Depending on the type and execution control internal

functionality is triggered for execution

Control
K\ih FB Type Name

5. Internal functionality finishes execution and provides
new output data

6. Output event is ready for sending, associated output
data is updated

7. Output event is sent
8. Step 4 to 7 may repeat several times

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl

Basic Function Block

Execution Control Chart

Execution
Control Chart

[V1>5]

FB Type Name

EO1

Algorithms
(IEC 61131-3) EI2[V1=5]

h I

\/
Internal variables

State?2

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 18

Application, System, and Distribution Model

Application

Model [H
= E
; ‘]—__>

System Model:

e Devices

e Process/Machine

e Communications
Infrastructure

Device 5

m

Appllcatlon 1

Controlled Process/Machine

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 19

Core Element: Event-driven Function Block

. _ _ Event-Interface
B Function Blocks extended with event interface

B Pure event-driven execution model

B Data types based on
IEC 61131-3

B Focus on encapsulation and reuse
B No global or directly addressed variables

B Hardware access with special function block type:

Service Interface Function Block Encap_Sulat_ed
Functionality

FB Type Name

Data-Interface

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 20

Device Model

B Device:
Container for Resources

B Provides

[] Network interface
[] Process interface

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB

Device

Network Interface

Process Interface

Modellgetriebenes Softwareengineering in der Industrieautomatisierung

© 2024 JKU, Zoitl

21

Resource Model

B Resource executes

Function Blocks Network Interface

Communications Interaction

B Resource provides

access to

[] Communication

[] Process

for Service Interface

Function Blocks

Process Interaction
Process Interface
Scheduling Function

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 22

IEC 61499 Communication Patterns

Unidirectional Communication

I

QO g=E=
STATUS ﬁ:
RD_1 =

- T

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL

OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung

Bidirectional Communication

QO g=

STATUS ﬁ:
RD 1 T
O -

© 2024 JKU, Zoitl

23

Application, System, and Distribution Model

Application
Model

System Model:

e Devices

e Process/Machine

e Communications
Infrastructure

Device 5

m

Appllcatlon 1

Controlled Process/Machine

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 24

Handling Communication for Distributed Applications

Application |

Model Aﬂﬁ /T
"
|

FNetwork Interface

Network Interface

Process Interface Process Interface

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 25

Resource Model

B Resource executes

Function Blocks Network Interface

Communications Interaction

B Resource provides

access to

[] Communication

[] Process

for Service Interface

Function Blocks

Process Interaction

Process Interface

Scheduling Function

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 26

Process Interface:
Where Events Meet the Scanned World

PLC Backplane Fixed 1O Special Purpose !EEEEE !IEE !IEEEEEEE

Fieldbus

W. Eisenmenger, J. MeRmer, M. Wenger and A. Zoitl, "Increasing control application reusability through generic device configuration model," 22" |IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Limassol, Cyprus, 2017

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 27

Generic Process Interface

Event INIT INITOME Event Event INTT INITOY Event
)_
Event REQ ;:; [E:Z::: Event YREQ CNFP Event
@ o ({sg ox Resource A Resource B Resource C
1.2
B00L vk BooL BOOL QI Qo BOOL
QOFriHRiEs STRING PARAMS STATUSH STRING
STRING PARAMS STATUSH-EEEF STRING BOOL ouT
INH—HIE BOOL Femmmmmmcbecmemedeeceecmeeeeheeemmmeme e e e
I [
 Observers
- o w ow
i
1
____________ 4
Event INIT INITOME Event Event INTT INITOP Fvent
Event REQ CNFM—H Event Event REQ CNFP Fvent
INDW B Event i&f o8
@IB [ﬂ 1.0
BooOL aI Qo BOOL
e s mgg. e o STRING [EPARAMS STATUSHEER STRING | | m=eeefesmmconmnnmneponnne i cmmnme i mmmn e mmmne o cmm e ey
EFIR
INN—EF BYTE BYTe ouT | IIandles
_______ 'I
A—)
1
K
gz::i FI{ET INE:E;: E:Z:zi Event INIT INITON Event
Event REQ CNFP Event I{ dl z"!'L I'I d.]. B I'I d.]. C‘
INDM-— Event & ow andie dandle dandile L
@Iw ; 7
1.1 Configuration
BOOL QI Qo BOOL
BOOL QO -EIERE BOOL R -
STRING PARAMS STATUSH STRING esource [Devw
STRING PARAr-'IS STATUSH-EEEF STRING WORD ouT e
INV—E3ET WORD Controller

J. MeBmer, "Handling a modular IO System in embedded IEC 61499 controllers®, BA Thesis, TU Miinchen, Mar 2017

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 28

Research Topic:
Automatically Derive Events from Process Values

The CIP Method: Component- and Model-Based

Construction of Embedded Systems CIP

ner .
ggdg ated machine
Hugo Fierz

Computer Engineering and Networks Laboratory TIK

Swiss Federal Institute of Technology ETH generated .
CH-8092 Ziirich, Switzerland code input m CIP shell | * * * | output

fierz@tik.ee.ethz.ch

Abstract. CIP is a model-based software development method for
embedded systems. The problem of constructing an embedded system is
decomposed into a functional and a connection problem. The functional
problem is solved by constructing a formal reactive behavioural model. A ‘ ‘
CIP model consists of concurrent clusters of synchronously cooperating IOW |eVe| ;]]
extended state machines. The state machines of a cluster interact by multi- dl‘ivel‘s proceSS and communication Interface
cast events. State machines of different clusters can communicate through

asynchronous channels. The construction of CIP models is supported by the ? i T i

CIP Tool, a graphical modelling framework with code generators that

transform CIP models into concurrently executable CIP components. The
connection problem consists of connecting generated CIP components to environment
the real environment. This problem is solved by means of techniques and o

user written | event embedded call
code extractor connector backs

A

4 2

external interr_1a| _
processes communication J

tools adapted to the technology of the interface devices. Construction of a
CIP model starts from the behaviour of the processes of the real
environment, leading to an operational specification of the system

Fig. 15. Implementation of a CIP unit

Fierz, H. (1999). The CIP Method: Component- and Model-Based Construction of Embedded Systems. In: Nierstrasz, O., Lemoine, M. (eds) Software Engineering — ESEC/FSE ’99. ESEC
SIGSOFT FSE 1999 1999. Lecture Notes in Computer Science, vol 1687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48166-4 23

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Modellgetriebenes Softwareengineering in der Industrieautomatisierung © 2024 JKU, Zoitl 29

Ali Spittel ¢» #CodelLand
@ASpittel

Why would you ever spend a few
minutes reading the documentation
when you can spend a few hours

randomly trying things?
10:55 AM - 23 Jul 19 - TweetDeck

206 Retweets 1,217 Likes

© 0

adl/&m MODELS 22

Keynote

Bran Selic
Malina Software Corp., Canada

A USER

INTERFACE
1S LIKE A JOKE.

IF YOU HAVE TO
EXPLAIN IT, IT'S
NOT THAT
GOOD.

Challenge:
Languages Like IEC 61499 Require Highly Sophisticated Tools

runtime-org.eclipse.fordiac.ide.product - CappingStation/CappingStation.sys - 4diac IDE

) 22 System Configuration
» iz Type Library
[2 virtualDNS.dns
} & ExampleBase
» 5 newProject
) 55 OSCAT

8= Outline X = g

JXU

[Properties x | [Virtual DNS [Deployment Console [£] Problems 47 Search

Instance
Type Info
Events
Data
H Adapter

Inputs
Name
1 emd

Type
AConveyor

LINZ INSTITUTE
OF TECHNOLOGY

Outputs

Comment

e =

Name
motor

inletBlocker
mainBlocker

index

{&] E_REND [Rend
vew & RECTART .|

g History %

Type
AMotor
ABlocker
ABlocker
ACylinder

§ =

Comment

CYBER-PHYSICAL
SYSTEMS LAB

File Edit Source Navigate Search Project Run Debug Window Help
=R TEEF QviFdviviivor o = i & 75%
S By WoRRE
&= System X TypeN = B £ Blin (B ctrl_functions. CTRL_PID £ TestDemo £2 CappingStation X = i = B8
¥ YP! pping
BS § £ CGpp » F G pp + = LeftCapp » =] StationC (=]
b & BlinkyTest 0 *o10 200 300 ¢+ 400 500 * &00 0 2% Palette
v 5& CappingStation ° Q search for Type
~ & CappingStation
4 Version Info Author ~ & Type Library
viE CapplngS(atlonApp g po » (= cappingStation
v i LeftC = TN TN) a » & convert
{®j CappingStationCtrl Y & [“Za;:mrﬂe“’;;““““ﬁ 4 g ::::ZS
i I smotorR torr v
[s1 DepletionAlarm S ‘ - pantorf _u(:::ga_ 'mnnm;rnj R
~ [StationComponents | o R T cna X
I » B ConveyorBelt > L ::’;z:;‘:‘[;‘” i il E_CTU[
¥ (= PickAndPlace o <md . (mmwk r 8 E_CTUD [Even
g intetBlocker
» (= Supply b mainBlocker i) E_CYCLE [Perd
i
sii Stationinterface - # EDFF
v i= MiddleCappingStation g isy E_DELAY | el
{&j CappingStationCtrl i8] E_DEMUX [Evd]
(st DepletionAlarm ie) E_F_TRIG [Boo
} =i StatienComponents g i8] E_MERGE «Vtc
(1 Stationlnterface 0 &) E_N_TABLE [G|
» i= RightCappingStation i8] E_PERMIT [peij
{sd StartButton o {gl E_R_TRIG [Boo
8 isg E_RDELAY [Rel

8

ZBlinky @ ctrlfunctions. LACTRLPID LAFTPIWL [MyStructTestdt {4 *MotorCtrl X ™5 22Blinky (B ctrl_functions. LACTRLPID GAFTPWL E2*MotorCtrl X | s i
300 ' 400 500 N 600 ' 700 ' 800 B 900 0 52 Palette
5 State -100 : 0 : 100 g 200 . 300 : <% Palette [
R / “cnd. turnon A Action 2 = EventTypes @
o [sTarT— cnd- turnOn - FGFRGRI4" startiotor [UpdateActuators ‘ o1 Event
- etTimeQut timer.START
= (= DataTypes @
[TRUE = motorRunning] - i & ANY
o timer.TimeOut 5]
A e frnon mn"mg e - sensorUpdate updateActuators - B ANY_BIT
. il EiMotorctrl b ANY_CHAR
cnd. mmnﬂ timer.TimeOut ————— grrar— |cnd.error - : 9
3 - BOOL motorRunning motoron BOOL - B ANY_CHARS
" & - TIME =changeTimeQut timer ARTImeQut = b3 ANY_DATE
tur 0ff — stopliotor |updateActuators 8 e AMotor [cmd
- setTimeout | timer.START i & Adapters @
g [FALSE = mutnrRunmnq] @ ABlocker
N = b3 ACapProvider
. stopped z=__ cnd.done
\cmd_mmu” = b3 AConveyor
g = B ACylinder
) [AGripper...
3 Interface | 4 ECC/%* Algorithm| =] Service | [Description| [FBTester E Interface | &f ECC|*:* Algorithm | = Service| O Description | [iZ| FBTester
= Blinky B ctrl_functions. i CTRL_PID L& FT_PIWL x {8 *MotorCtrl e % Debug X [Projec &=Syste = O EGFT_PIWL {&MySuperSimple X = ™n = 0O ||®-Va X *Br & Ex &fWa = O

_~ALGORITHM REQ

©IF NOT init OR RST THEN

init := BOOL#TRUE;
&y in last := in;
t last

(* read last cycle time in Microseconds *)

tx := ULINT TO UDINT(TIME IN US TO ULINT(NOW MONOTONIC()));
tc := UDINT_TO REAL(tx - t_last);
t_last := tx;

(* calculate proportional part *)
p = KP * IN;

(* run integrator *)
i := (IN + in_last) * REAL#5.8E-7 * KI * tc + i;
in last := IN;

(* caltulate output Y *)
Y =
E Interface "“'Agonthm = Service| [Description [FBTester

= ULINT TO UDINT(TIME IN US TO ULINT(NOW MONOTONIC()));

B § | _ALGORITHH REQ
MySuperSimple.fbt [Evaluate Simple FB]
S ey ® - Adding := Adding + IN; -
ySuperSimple fht Ssubtracting := Subtracting - IN; & THIS
f? MySuperSimple.fbt oIN
END_ALGORITHM @ Adding
= MySuperSimple - @ Subtracting
+ SimpleFBEvaluator il © INTERNALVAR]
@ INTERNALVAR4
@ INTERNALVAR2
@ INTERNALVAR3
@ INTERNALVARG
@ INTERNALVAR7
@ INTERNALVARS
@ INTERNALVARS
{3 FB Debug x & =B

EQ)

38 Interface *%:* Algorithm | S} Service|

& Console [£] Problems =g Progress [i) DebugShell & Console
B bl RIS #®

o E

1=

MySuperSimpl
20
28600
-28600
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

= @

—

Modellgetriebenes Softwareengineering in der Industrieautomatisierung

© 2024 JKU, Zoitl

33

Thank you!

LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

IEC 61499, a system so fine,

Controls processes, bringing efficiency in line.
A network built of functions divine,
It offers us control, we need it all the time.

Networks of functions, a beautiful view,

Flowing together, with seamless control too.
They interact, to bring forth what is true,

And with IEC 61499, everything comes through.

In factories and plants, near and far,
Its presence is felt, a shining star.
Safe and reliable, never any lag,

It's the backbone of our era, a timeless piece of art.

Real-time control, is what we desire,

With IEC 61499, our dreams won't tire.

Functions always up-to-date, forever anew,

In a world that's constantly changing fast, that's true.

So let us celebrate, IEC 61499 so pure,

Our system that helps us, the future secure.

With efficiency, control and bravery in tow,

Together, let us reach our goal, in real-time, and grow.

ChatGPT in the style of Goethe, instructed by Bianca Wiesmayr, 2023

	LIT CPS Lab
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

