
6th Workshop on Software Engineering for Cyber-Physical Production Systems (SECPPS) @ SE24 @ JKU

Machine Sequence Control with Lua Coroutines

Albrecht Wöß | Software Architect | Signum+ Software

Markus Löberbauer | Partner | Signum+ Software

Georg Koll | R&D Manager Plattform Software | TRUMPF Maschinen Austria

2/28/2024Albrecht Woess | Signum+ Software2 |

ToolMaster

Sets Up

the

Bending Tools

Example: Step Chain vs. Sequence

3 | Albrecht Woess | Signum+ Software 2/28/2024

enum LED_BLINKER_STATE { ENABLE, ON, DISABLE, OFF };
LED_BLINKER_STATE current_state = ENABLE;
time_t led_state_change_time;

void led_blinker() {
switch (current_state) {
case ENABLE:
enable_led();
current_state = ON;
led_state_change_time = get_current_time();
break;

case ON:
if (get_current_time() > led_state_change_time + 50) { current_state = DISABLE; }
break;

case DISABLE:
disable_led();
current_state = OFF;
led_state_change_time = get_current_time();
break;

case OFF:
if (get_current_time() > led_state_change_time + 50) { current_state = ENABLE; }

break;
}

}

DO

WAIT

DO

WAIT

Example: Step Chain vs. Sequence

Example: Step Chain vs. Sequence

4 | Albrecht Woess | Signum+ Software 2/28/2024

void led_blinker() {
while (true) {

enable_led();
wait(50);
disable_led();
wait(50);

}
}

DO

WAIT

DO

WAIT

Example: Step Chain vs. Sequence

Software Monolith vs. Loadable ScriptsSoftware Monolith

5 | Albrecht Woess | Signum+ Software 2/28/2024

-……-……-……-……-……-……-……
-……-……-……-……-……-……-……

-……-……-……-……-……-……-……
-……-……-……-……-……-……-……

-……-……-……-……-……-……-……
-……-……-……-……-……-……-……

-……-……-……-……-……-……-……
-……-……-……-……-……-……-……
-……-……-……-……-……-……-……

All possible tasks
connected

in a complex
inseparable

web of
control scripts

One script
per task

(un-/
loadable)

Complexity is many times as high as
the sum of all tasks‘ complexities

Complexity is equal to
each task‘s complexity

vs. Loadable Scripts

Thread vs. Coroutine

Thread = preemptive multi-threading

➔ Computer / Operating System / Machine

Who decides, when execution switches to the next script?

2/28/2024Albrecht Woess | Signum+ Software6 |

Coroutine = cooperative multi-threading

➔ Program / Programmer / Human Person

2/28/2024Albrecht Woess | Signum+ Software7 |

Lua

Controls

the

Machine

Lua Controls the Machine

• We provide all elementary functions for each actor of the machine as coroutines.

• Such coroutines quickly check, if they have completed their current task or should start a new one.

• Then they immediately yield control to the next coroutine (coroutine.yield()).

• Cooperative!

The programmer has to pay attention to only take control for a minimal amount of time (microseconds!).

• The main loop executes 1000x per second

• and resumes each coroutine (coroutine.resume()).

• Development Environment: Visual Studio Code with Lua Language Server (by sumneko) extension

• Our Lua Interpreter supports yield even from C subroutines (under Windows).

• The debugger can attach directly to the running machine, even in production!

• It stops the whole system and then allows single stepping.

• There is almost no runtime overhead.

2/28/2024Albrecht Woess | Signum+ Software8 |

Debugging the Machine

9 | Albrecht Woess | Signum+ Software 2/28/2024

2/28/2024Albrecht Woess | Signum+ Software10 |

The machine executes an endurance test script

test_R_Z for the movement along the axes

R (up/down) and Z (forward/back).

The laptop is connected to the machine

via a LAN cable.

Lua Community Participation

2/28/2024Albrecht Woess | Signum+ Software11 |

Albrecht Wöß | Signum+ Software

albrecht.woess@signum.plus

Markus Löberbauer | Signum+ Software

markus.loeberbauer@signum.plus

Georg Koll | TRUMPF Maschinen Austria

georg.koll@trumpf.com

• We want to return our extensions of the Lua interpreter to the community.

• Our Lua Language Server adaptations are already integrated into the official release.

• We started and will continue publishing our approach in papers and talks:

Paper at VST2024 at SANER24, Finland:

“Introducing a Linter in an Industrial Lua Code Base”​

mailto:albrecht.woess@signum.plus

	Standardabschnitt
	Slide 1: Machine Sequence Control with Lua Coroutines
	Slide 2
	Slide 3: Example: Step Chain vs. Sequence
	Slide 4: Example: Step Chain vs. Sequence
	Slide 5: Software Monolith vs. Loadable Scripts
	Slide 6: Thread vs. Coroutine
	Slide 7
	Slide 8: Lua Controls the Machine
	Slide 9: Debugging the Machine
	Slide 10
	Slide 11: Lua Community Participation

